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Abstract Genomic selection is a promising breeding

strategy for rapid improvement of complex traits. The

objective of our study was to investigate the prediction

accuracy of genomic breeding values through cross vali-

dation. The study was based on experimental data of six

segregating populations from a half-diallel mating design

with 788 testcross progenies from an elite maize breeding

program. The plants were intensively phenotyped in multi-

location field trials and fingerprinted with 960 SNP mark-

ers. We used random regression best linear unbiased pre-

diction in combination with fivefold cross validation. The

prediction accuracy across populations was higher for grain

moisture (0.90) than for grain yield (0.58). The accuracy of

genomic selection realized for grain yield corresponds to

the precision of phenotyping at unreplicated field trials in

3–4 locations. As for maize up to three generations are

feasible per year, selection gain per unit time is high and,

consequently, genomic selection holds great promise for

maize breeding programs.

Introduction

Genomic selection was suggested as a novel approach in

the context of animal breeding with the potential to lead

to a paradigm shift in the design and implementation of

livestock and crop breeding programs (Meuwissen et al.

2001). Genomic selection differs from previous strategies

such as linkage and association mapping in that it aban-

dons the objective to map the effect of individual genes

and instead focuses on an efficient estimation of breeding

values on the basis of a large number of molecular

markers, ideally covering the full genome (Jannink et al.

2010). As a first step in genomic selection, marker effects

are estimated on the basis of a training set of genotypes,

which are phenotyped and fingerprinted with dense mar-

ker data. In the second step, individuals related to the

training population that have been genotyped but not

phenotyped are selected based on the estimated marker

effects.

Several statistical approaches have been suggested to

estimate marker effects such as random regression best

linear unbiased prediction (RR-BLUP; Whittaker et al.

2000; Meuwissen et al. 2001) and Bayesian shrinkage

regression methods (Meuwissen et al. 2001; Xu 2003; Ter

Braak et al. 2005; Calus et al. 2008). Relationships among

statistical models have been theoretically investigated (e.g.,

Piepho 2009). Statistical models have also been compared

based on simulation studies, which revealed that the

accuracy depends on the genetic architecture of the trait

(e.g., Daetwyler et al. 2010), the underlying population

structure (e.g., Habier et al. 2007; Zhong et al. 2009), and

the applied marker density (Meuwissen and Goddard

2010). Recently, statistical approaches have been com-

pared using empirical data of cattle (Luan et al. 2009),

maize, barley, wheat, and Arabidopsis (Lorenzana and
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Bernardo 2009; Crossa et al. 2010). In many instances, RR-

BLUP showed good performance especially with low to

medium marker density.

Prediction accuracy of genomic selection was estimated

intensively based on simulation studies (for review see

Heffner et al. 2009). First empirical results for dairy cattle

support the large potential of genomic selection for live-

stock breeding (e.g., Hayes et al. 2009; Luan et al. 2009).

The structure of the mapping populations underlying

genomic selection in animals, however, differ strongly

compared with mapping populations present in plant

breeding programs (e.g., presence of migration, inbreeding,

different family structure). For plant breeding, empirical

evaluation of the accuracy of genomic selection was done

using cross validation in bi-parental populations of maize,

barley, and Arabidopsis (Lorenzana and Bernardo 2009).

Moreover, Crossa et al. (2010) examined empirically the

prospects of genomic selection in a diverse panel of maize

and wheat lines. These results suggest that genomic

selection can be an effective strategy in plant breeding.

Selection in applied plant breeding is, however, not only

done within a specific bi-parental cross or within a diverse

panel of elite lines but also rather within and among crosses

(Wegenast et al. 2008). Evaluation of the accuracy of

genomic selection for this scenario is to the best of our

knowledge not yet available.

The main goal of our study was to examine the potential

of genomic selection using experimental data from a

commercial maize breeding program. In particular our

objectives were to (1) study the impact of the number of

markers and progenies on the prediction accuracy of

genomic breeding values, (2) investigate the prediction

accuracy of genomic breeding values within and across six

bi-parental maize populations through fivefold cross vali-

dation, and (3) compare prediction accuracies of genomic

breeding values within bi-parental populations applying

models with or without population effects as well as with

one approach relying on preselected markers with low

genetic background interaction effects.

Materials and methods

Genotypic and phenotypic data

The field experiments were described in detail by Steinhoff

et al. (2011). Briefly, six F3 populations, with a total of 788

individuals were obtained from a half-diallel cross between

four dent inbreds (A, B, C, and D). The number of progenies

in each population was varied from 104 to 143 (Table 1).

Each F3 plant was selfed to obtain an F3:4 family. Testcross

(TC) progenies were produced by mating all the 788 F3:4

lines to an inbred tester from the opposite heterotic group.

These testcross progenies and the four parental inbreds were

evaluated in 2007 in Italy at ten locations with unreplicated

trials for grain yield (Mg ha-1) adjusted to a moisture

concentration of 155 g kg-1 and grain moisture (g kg-1) at

harvest. Populations were evaluated in separate but adjacent

field trials connected with four common checks. In each

environment, phenotypic data were adjusted for block

effects with four checks. Genotypic variances (rG
2) among

and within populations were estimated with following

random model: yl ¼ Lþ Popþ GðPopÞ þ e, where yl refers

to the adjusted values of genotypes of single locations,

L, Pop and G refers to the effect of the locations, effects of

the six biparental populations, and effects of the genotypes,

respectively. Genotypes were treated as independent; thus,

relatedness among the parental lines was not accounted for

estimating genotypic variances among and within crosses.

Moreover, Best Linear Unbiased Estimates (BLUEs) of

testcross progenies and parents were determined by

assuming fixed genotypic effects.

Each F3 plant was genotyped with 960 SNPs using

Taqman technology (Applied Biosystems 2002). Observed

genotype frequencies at each marker locus were checked

for deviations from Mendelian segregation ratios and allele

frequency of 0.5 using a v2 test. Appropriate type I error

rates were determined by applying the Bonferroni–Holm

procedure (Holm 1979). High-quality molecular data were

produced with final 857 SNP markers used for the further

Table 1 Number of progenies,

genotypic variance (rG
2 ) and

heritability (h2) for each of the

six populations, genotypic

variance within (rWithin
2 ) and

among populations (rAmong
2 ), as

well as heritability assessed

across all six populations for

grain yield (Mg ha-1) and grain

moisture (g kg-1)

**Significantly different from

zero at the 0.01 level of

probability

Population Number of progenies Grain yield Grain moisture

rG
2 h2 rG

2 h2

Pop-AxB 131 20.05** 0.58 76.04** 0.78

Pop-AxC 143 38.46** 0.72 65.05** 0.85

Pop-AxD 140 30.13** 0.68 68.17** 0.81

Pop-BxC 129 34.95** 0.71 59.99** 0.78

Pop-BxD 141 14.56** 0.51 51.78** 0.77

Pop-CxD 104 11.67** 0.48 74.76** 0.80

rWithin
2 24.35** – 62.71** –

rAmong
2 0.97** – 138.04** –

Across 25.10** 0.62 181.52** 0.90
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analyses. The average number of polymorphic markers

varied from 272 for Pop-CxD to 469 for Pop-BxD

(Table 2). Genetic map distances among adjacent markers

of single populations averaged 4 cM. Less than 10% of the

marker pairs had a genetic map distance larger than 10 cM.

Data analysis

Breeding values were estimated by model y ¼ lþ
PNm

j¼1 Xjaj þ e (Model A), where y is a N 9 1 vector of

BLUEs estimated across locations; Nm refers to the number

of markers fitted; aj is the effect of the jth marker; Xj is a

N 9 1 vector denoting the genotype of the individuals for

marker j, with Xij ¼ 0 if individual i is homozygous for the

first allele at locus j, Xij ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� Fð Þpj � ð1� pjÞ

p
if

heterozygous, Xij ¼ 2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2� FÞpj � ð1� pjÞ

p
if individual

i is homozygous for the second allele at locus j, where F

denotes the inbreeding coefficient of individual i and pj

refers to the allele frequency at marker j. The division by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2� FÞpj � ð1� pjÞ

p
standardizes the variance of the

marker genotype data to 1 (Habier et al. 2007). The vari-

ance of aj is assumed to be rG
2/Nm. We used the error

variance of the BLUEs across locations, i.e., rE
2 divided by

the number of locations (L) (cf. Melchinger et al. 1998).

Consequently, penalty parameter k was defined as (rE
2/L)/

(rG
2/Nm). The estimates of aj were obtained from mixed-

model equations (Henderson 1984). Given the estimates of

aj and the marker genotypes, genetic values are predicted

as, PV ¼
PNm

J¼1 Xijâj where Xij is the marker genotype of

individual i for marker j coded the same as above, and baj is

the estimated effect of marker j.

Cross validation

We applied fivefold cross validation to evaluate the

accuracy of genomic selection in plant breeding trials.

Here, the entire data set is randomly split into five sub-

sets. Four subsets were combined and formed the training

set for estimating genetic effects. The remaining subset

form the validation set. The correlation between observed

and predicted phenotypes (rMP) was estimated. The

accuracy of genomic selection was expressed as rGS =

rMP/h (Lande and Thompson 1990; Dekkers 2007), where

h refers to the square root of heritability. The sampling

of training and validation set was repeated 5,000 times.

We estimated the marker effects and predicted the

genomic breeding values in three different scenarios as

follows:

Scenario 1 Estimation was performed across the six

segregating populations.

(a) Evaluation of prediction was done across the six

populations.

(b) Evaluation of prediction was done within each

population.

Scenario 2 Estimation and prediction was performed

within each segregating population.

For scenario 1, estimation of marker effects was based

on the estimates of the genotypic variance of the total

population. Prediction accuracy was evaluated by stan-

dardizing the heritability of the total population (scenario

1a) or with the average heritability of single segregating

families (scenario 1b). In contrast, scenario 2 is based on

the estimates of the average genotypic variance and heri-

tability within segregating families.

Moreover, we studied the effect of the number of

markers and also the number of progenies on the prediction

accuracy of genomic breeding values through cross vali-

dation. Therefore, we varied the number of markers from

100 to 800 with an interval of 100 markers each and the

number of individuals from 12.5 to 100% with the interval

of 12.5% of the total population size.

Table 2 Number of polymorphic markers, accuracy (rGS) of genomic

predictions, and the 0.90 confidence intervals (CI) based on estima-

tion and prediction within each population (scenario 2) or estimation

across and prediction within six segregating populations (scenario 1b)

investigated by fivefold cross validation based on Model A for grain

yield and grain moisture

Population Polymorphic markers Grain yield Grain moisture

Within Across Within Across

rGS CI rGS CI rGS CI rGS CI

Pop-AxB 435 0.51 0.21–0.79 0.56 0.24–0.84 0.68 0.44–0.86 0.70 0.51–0.84

Pop-AxC 481 0.40 0.11–0.65 0.51 0.20–0.76 0.68 0.47–0.85 0.72 0.53–0.86

Pop-AxD 427 0.56 0.24–0.81 0.64 0.32–0.90 0.59 0.32–0.79 0.63 0.42–0.81

Pop-BxC 462 0.64 0.36–0.87 0.70 0.41–0.94 0.70 0.46–0.88 0.65 0.43–0.83

Pop-BxD 496 0.56 0.20–0.85 0.40 0.13–0.74 0.50 0.23–0.74 0.55 0.27–0.76

Pop-CxD 272 0.48 0.06–0.84 0.39 0.00–0.72 0.56 0.28–0.78 0.61 0.35–0.81

Mean 0.53 0.20–0.80 0.54 0.22–0.82 0.62 0.37–0.82 0.64 0.42–0.82
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Models to improve prediction accuracy

within populations

Along with Model A, two more models were used in this

study. Model B differs from Model A by additionally

including a population effect. In Model C markers, which

in a pre-screen showed significant marker 9 population

interaction effects (P \ 0.1), were excluded from the

analyses. Further, we compared the results of Model C with

a scenario where we randomly selected markers of the

same dimension as Model C to correct for effects of using a

reduced marker sample size.

Results

For both traits, genotypic variance was significantly

(P \ 0.01) larger than zero within each of the six popula-

tions (Table 1). The ratio of genotypic variance among

versus within populations was substantially larger for grain

moisture (2.20) compared with grain yield (0.04). Herita-

bility within populations and for the total population was

high for grain moisture and moderate for grain yield.

The following results are presented only for Model A if

not stated otherwise: The prediction accuracy of genomic

breeding values across populations (scenario 1a) was

higher for grain moisture (0.90) compared with grain yield

(0.58) (Fig. 1). The confidence intervals for prediction

accuracy ranged from 0.87 to 0.97 for grain moisture and

from 0.45 to 0.69 for grain yield. Re-sampling reduced sets

of SNPs, revealed that the accuracy was nearly reaching a

plateau at 800 SNPs (Fig. 2). In contrast, re-sampling

reduced sets of individuals revealed that the slope of the

curve stays high and that the curve does not reach a plateau

towards the large population sizes (Fig. 3). This was par-

ticularly true for grain yield.

For grain moisture, comparison of the prediction accu-

racy of genomic breeding values was higher for scenario

1a (0.90; Fig. 1) than for scenario 1b (0.64; Table 1).

Similarly for grain yield, we also observed a higher accu-

racy for scenario 1a (0.58; Fig. 1) than for scenario 1b

(0.54; Table 1). However, the difference in the accuracy of

genomic breeding values was small and similar for both

traits at scenario 1b and scenario 2 (Table 2). The number

of polymorphic markers within populations was not asso-

ciated with the accuracy for both traits.

Further, we tested two more models for genomic selec-

tion with the aim to improve the prediction efficiency

within populations. Including a population effect in the

estimation model (Model B) led to a negligible improve-

ment in the accuracy to predict genomic breeding values for

grain moisture, but not for grain yield (Table 3). Selecting

SNPs with non-significant (P \ 0.1) SNP 9 population

interaction effects in a pre-screen (Model C) also did not

yield an improved accuracy for predicting genomic

breeding values. In contrast, values of the accuracy were

decreased.
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Fig. 1 Distribution of the

accuracy (rGS) of genomic

predictions across populations

(scenario 1a) revealed by

fivefold cross validation with

Model A for grain yield and

grain moisture
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Fig. 2 Effect of the number of markers on the accuracy of genomic

selection for grain yield and grain moisture when the number of

markers varied from 100 to 800
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Discussion

Simulation studies suggest that genomic selection is

promising for a rapid improvement of quantitative traits in

plants (for review see Heffner et al. 2009) and better suited

compared to marker-assisted recurrent selection (Bernardo

and Yu 2007). However, the prospects of genomic selec-

tion finally have to be validated with empirical data. For

plants, a previous cross validation study of genomic

selection with empirical data was based on diverse panels

of elite maize and wheat lines (Crossa et al. 2010). These

diverse panels of elite lines are the final product after

intensive selection but do not reflect the population struc-

ture and genetic variance typically present in plant breed-

ing programs, where promising candidates are selected

within and among segregating populations (Wegenast et al.

2008). This stimulated us to evaluate the prediction effi-

ciency of genomic breeding values within and across

populations using empirical data from a commercial maize

breeding program.

Influence of SNPs and population size on the accuracy

of genomic selection

Implementing genomic selection with a low-density mar-

ker panel is desired to achieve a good cost-benefit ratio

(Heffner et al. 2010; Jannink et al. 2010). The number of

markers needed for accurate predictions of genotypic val-

ues depends on the extent of linkage disequilibrium (LD)

between markers and QTL (Meuwissen et al. 2001) and

also on the germplasm under consideration (Zhong et al.

2009). For a large panel of European elite maize inbred

lines, Van Inghelandt et al. (2011) observed a rapid decay

of LD with genetic map distance and proposed a density of

up to 1 million markers for effective genome-wide asso-

ciation mapping. In contrast, Lorenzana and Bernardo

(2009) suggested\100 markers for bi-parental populations

and 200–800 markers for random-mated maize populations

for genome-wide prediction of genotypic values. We used a

design with a few segregating populations, which leads to

an extent of LD between the two above-described scenarios

of single bi-parental populations and a diverse panel of

inbred lines. In line with this expectation, findings on re-

sampling subsets of SNPs revealed that the applied marker

density is not a major limiting factor for the accuracy of

genomic selection in the present study (Fig. 2). Our finding

also corroborates the results of simulation studies and

suggests that the required marker density also depends on

the statistical method employed (e.g., Habier et al. 2007).

We applied RR-BLUP to estimate marker effects, since it

performed well especially in situations with a low marker
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Fig. 3 Effect of the number of individuals on the accuracy of

genomic selection when the size of the training population varied

from 12.5 to 100% of the total population size shown for grain yield

and grain moisture

Table 3 Differences in the prediction accuracy (rGS) of genome-wide breeding values between Model A with B and C as investigated by

fivefold cross validation for grain yield and grain moisture

D (Model A–B) Grain yield Grain moisture

D (Model A–C) D (Model A–Ca) D (Model A–B) D (Model A–C) D (Model A–Ca)

Pop-AxB 0.00 0.01 0.00 0.01 0.05 0.05

Pop-AxC 0.00 0.04 0.00 0.00 0.20 0.07

Pop-AxD 0.00 0.00 0.00 0.01 0.12 0.04

Pop-BxC 0.00 0.00 0.00 0.04 0.13 0.05

Pop-BxD 0.00 0.01 0.00 0.01 0.10 0.05

Pop-CxD 0.00 0.01 0.01 0.01 0.11 0.06

Average 0.00 0.01 0.00 0.01 0.12 0.06

Calibration was performed across populations and predictions were done within populations
a The comparison is based for Model A on the same number of SNPs as in Model C but SNPs were randomly chosen, for details about models

see ‘‘Materials and methods’’
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density (Luan et al. 2009). The reason for this good per-

formance can be due to the efficient exploitation of genetic

relationships in genomic selection with RR-BLUP (Habier

et al. 2007).

Simulation studies showed that the population size is

crucial for the prediction accuracy in genomic selection

(Habier et al. 2007). In accordance with this expectation,

we observed a monotonic increase in the prediction accu-

racy for grain yield with increasing population size without

any substantial decrease in the slope compared with re-

sampling markers (Figs. 2, 3). Moreover, the range of

prediction accuracy in re-sampling individuals was sub-

stantially larger compared with re-sampling markers.

Consequently, our result for grain yield clearly underlines

the findings of simulation studies in that the size of the

training population is of crucial importance in genomic

selection. The impact of the population size on the accu-

racy of genomic selection was less pronounced for grain

moisture (Fig. 3), which might be due to presence of high

variance among populations that can be efficiently

exploited by few individuals per population.

Accuracy of genomic selection evaluated

across populations

In breeding program selection is performed within and

across populations with the final goal to detect the best

performing individuals in the total population. For grain

moisture, prediction accuracy of genomic breeding values

across populations was of remarkable magnitude amounting

to 0.90 (Fig. 1). This clearly underlines the huge potential to

estimate genomic breeding values in elite maize germplasm

across populations. In contrast, for grain yield, the accuracy

of genomic breeding values was medium with rGS = 0.58.

These findings are in accordance with results reported by

Crossa et al. (2010) who analyzed the prospects of genomic

selection for maize grain yield under drought-stress condi-

tions. The large differences in the prediction accuracy of

genomic breeding values of grain yield compared with grain

moisture can be explained by the high magnitude of geno-

typic variance among populations observed for grain

moisture (Table 1), which can be efficiently exploited in

genomic selection. Alternatively, the differences may also

reflect different complexities of the underlying genetic

architecture of both traits as supported by substantial vari-

ation in prediction efficiency within populations (Table 2).

Accuracy of genomic selection evaluated

within populations and potential overestimation

of the prospects of genomic selection

Genetic variation among populations can be efficiently

exploited in plant breeding through parental selection,

which does not require genomic selection. As the genetic

variance among populations was substantial for grain

moisture in our study (Table 1), we compared the predic-

tion accuracy of genomic breeding values within (scenario

2) versus across populations (scenario 1a). For grain

moisture, the prediction accuracy of genomic breeding

values was substantially lower for within compared to

across populations (Fig. 1; Table 2), which clearly indi-

cates that a high magnitude of genetic variance among

populations in the training set may lead to an overestima-

tion of the prospects of genomic selection in plant

breeding.

Interestingly, we observed a comparable accuracy of

genomic selection for across-within (scenario 1b) com-

pared with within–within populations (scenario 2) despite a

six times larger number of individuals in the training

population (Table 2). This result is in contrast to the

findings of a simulation study of de Roos et al. (2009) who

suggested estimating SNP effects across and not within

populations. The low prediction accuracy of genomic

selection for across-within populations can be due to a high

proportion of SNPs with significant (P \ 0.05) SNP 9

population interaction effects (e.g., for grain moisture

46%). Substantial SNP 9 population interaction effects

have also been reported recently in an elite maize breeding

germplasm (Liu et al. 2011) and can also be caused by

epistasis (Blanc et al. 2006), multiple alleles (Calus et al.

2008) and by the fact that the associations between SNPs

and QTL might not be conserved between the different

populations.

Enhancing accuracy of genomic selection

within populations

For joint linkage association mapping, inclusion of a

population effect has been proposed to obtain unbiased

estimates of SNP effects (Reif et al. 2010; Liu et al. 2011).

Modeling general population effects in the prediction of

marker effects, as done in Model B, yielded no substantial

improvement in predicting genomic breeding values

(Table 3). Alternatively, in Model C we excluded the

markers with significant SNP 9 population interaction

effects to improve genomic selection. Nevertheless, the

prediction accuracy was decreased in Model C compared

with Model A. This reduction in the accuracy for both traits

can be explained by the elimination of SNPs with signifi-

cant contribution to the genetic variance among but also

within populations. Summarizing, none of the tested

alternative methods yielded a significant improvement in

predicting genomic breeding values within populations and

thus Model A appears to be a good choice for the routine

implementation of genomic selection in plant breeding

programs.
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Most of the models applied in the context of genomic

selection focus exclusively on main effects. Extending the

existing models towards epistasis possesses the potential to

further improve the prediction efficiency within popula-

tions. Necessary information to accommodate epistasis in

genomic selection is good prior knowledge on the relative

importance of variance due to main versus epistatic effects.

This information is still very limited since many designs to

unravel the role of epistasis are hampered by the fact that

the estimated main effects also contain epistasis (cf. Mel-

chinger et al. 2007). Moreover, population sizes required to

obtain robust estimates of SNP effects are much higher for

epistatic effects than for main effects (Carlborg and Haley

2004).

Prospects of genomic selection in maize breeding

The response to one cycle of genomic selection is equal to

one cycle of phenotypic selection when the prediction

accuracy of genomic breeding values is equal to h (Lande

and Thompson 1990; Dekkers 2007). In the present study

we observed an accuracy of 0.58 for grain yield (Fig. 1).

Considering the estimates of variance components for grain

yield (Table 1) suggests that this precision corresponds to

unreplicated field trials at 3–4 locations. Costs for geno-

typing per line are currently equivalent to 3–4 plots and,

thus, genomic selection seems to hold great promise for

maize breeding programs. It is important to note, however,

that our cross validation study is based only on data of one

cycle of selection. Therefore, the observed prediction

accuracies should be considered as an upper level for sit-

uations of genomic breeding value prediction with the

underlying population size of around 1,000 individuals.

Selection gain per unit time is crucial to compare the

potential of genomic versus phenotypic selection. For

maize, up to three cycles of genomic selection per year are

possible (Lorenzana and Bernardo 2009). Therefore,

genomic selection would be more efficient in terms of

genetic gain per year compared with phenotypic selection

even if the prediction accuracy decreases due to recombi-

nation and fixation of alleles.
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